Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Int J Mol Sci ; 24(10)2023 May 12.
Article in English | MEDLINE | ID: covidwho-20241326

ABSTRACT

A next-generation sequencing (NGS) study identified a very high viral load of Torquetenovirus (TTV) in KD patients. We aimed to evaluate the feasibility of a newly developed quantitative species-specific TTV-PCR (ssTTV-PCR) method to identify the etiology of KD. We applied ssTTV-PCR to samples collected from 11 KD patients and 22 matched control subjects who participated in our previous prospective study. We used the NGS dataset from the previous study to validate ssTTV-PCR. The TTV loads in whole blood and nasopharyngeal aspirates correlated highly (Spearman's R = 0.8931, p < 0.0001, n = 33), supporting the validity of ssTTV-PCR. The ssTTV-PCR and NGS results were largely consistent. However, inconsistencies occurred when ssTTV-PCR was more sensitive than NGS, when the PCR primer sequences mismatched the viral sequences in the participants, and when the NGS quality score was low. Interpretation of NGS requires complex procedures. ssTTV-PCR is more sensitive than NGS but may fail to detect a fast-evolving TTV species. It would be prudent to update primer sets using NGS data. With this precaution, ssTTV-PCR can be used reliably in a future large-scale etiological study for KD.


Subject(s)
Mucocutaneous Lymph Node Syndrome , Torque teno virus , Humans , Torque teno virus/genetics , Mucocutaneous Lymph Node Syndrome/diagnosis , Mucocutaneous Lymph Node Syndrome/genetics , Polymerase Chain Reaction , Prospective Studies , High-Throughput Nucleotide Sequencing/methods
2.
J Pediatric Infect Dis Soc ; 12(6): 322-331, 2023 Jun 30.
Article in English | MEDLINE | ID: covidwho-20237253

ABSTRACT

BACKGROUND: To identify a diagnostic blood transcriptomic signature that distinguishes multisystem inflammatory syndrome in children (MIS-C) from Kawasaki disease (KD), bacterial infections, and viral infections. METHODS: Children presenting with MIS-C to participating hospitals in the United Kingdom and the European Union between April 2020 and April 2021 were prospectively recruited. Whole-blood RNA Sequencing was performed, contrasting the transcriptomes of children with MIS-C (n = 38) to those from children with KD (n = 136), definite bacterial (DB; n = 188) and viral infections (DV; n = 138). Genes significantly differentially expressed (SDE) between MIS-C and comparator groups were identified. Feature selection was used to identify genes that optimally distinguish MIS-C from other diseases, which were subsequently translated into RT-qPCR assays and evaluated in an independent validation set comprising MIS-C (n = 37), KD (n = 19), DB (n = 56), DV (n = 43), and COVID-19 (n = 39). RESULTS: In the discovery set, 5696 genes were SDE between MIS-C and combined comparator disease groups. Five genes were identified as potential MIS-C diagnostic biomarkers (HSPBAP1, VPS37C, TGFB1, MX2, and TRBV11-2), achieving an AUC of 96.8% (95% CI: 94.6%-98.9%) in the discovery set, and were translated into RT-qPCR assays. The RT-qPCR 5-gene signature achieved an AUC of 93.2% (95% CI: 88.3%-97.7%) in the independent validation set when distinguishing MIS-C from KD, DB, and DV. CONCLUSIONS: MIS-C can be distinguished from KD, DB, and DV groups using a 5-gene blood RNA expression signature. The small number of genes in the signature and good performance in both discovery and validation sets should enable the development of a diagnostic test for MIS-C.


Subject(s)
COVID-19 , Mucocutaneous Lymph Node Syndrome , Child , Humans , COVID-19/diagnosis , COVID-19/genetics , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/genetics , Hospitals , Mucocutaneous Lymph Node Syndrome/diagnosis , Mucocutaneous Lymph Node Syndrome/genetics , COVID-19 Testing
3.
Immunol Lett ; 256-257: 34-41, 2023.
Article in English | MEDLINE | ID: covidwho-2302009

ABSTRACT

Kawasaki disease (KD), a rare multisystem inflammatory condition that predominantly affects children under six years of age, is the leading cause of childhood-acquired heart disease in developed countries. The pathogenesis is unknown, but studies support that an infectious stimulus triggers an autoimmune reaction in a genetically susceptible child. Recent studies demonstrated an association with autoantibody response to Del-1 (also known as EDIL3) in children with KD. Del-1 is an extracellular matrix protein that is expressed both in macrophages and vascular endothelium. Del-1 has an anti-inflammatory role by preventing leucocyte migration to inflammatory sites. Del-1 has two expression variants and genetic variants of Del-1 have been associated with the risk of intracranial aneurysms. Due to the physiologic plausibility for a role during KD, we chose to assess if autoantibodies against DEL-1 are seen in a larger cohort of children with KD and to assess if responses correlated to aneurysm formation. Contrary to prior findings, in comparison to febrile controls, autoantibodies were not overall higher in children with KD. Elevation in Post-IVIG samples in comparison to pre-IVIG and convalescent samples supports the commonality of anti-Del-1 antibodies. Autoantibodies were notably lower in children with KD who had coronary Z score elevations in comparison to those who did not.


Subject(s)
Coronary Aneurysm , Mucocutaneous Lymph Node Syndrome , Child , Humans , Child, Preschool , Autoantibodies , Coronary Aneurysm/complications , Coronary Aneurysm/prevention & control , Mucocutaneous Lymph Node Syndrome/genetics , Immunoglobulins, Intravenous/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Calcium-Binding Proteins , Cell Adhesion Molecules
4.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166707, 2023 06.
Article in English | MEDLINE | ID: covidwho-2269405

ABSTRACT

INTRODUCTION: The COVID-19 pandemic provide the opportunities to explore the numerous similarities in clinical symptoms with Kawasaki disease (KD), including severe vasculitis. Despite this, the underlying mechanisms of vascular injury in both KD and COVID-19 remain elusive. To identify these mechanisms, this study employs single-cell RNA sequencing to explore the molecular mechanisms of immune responses in vasculitis, and validate the results through in vitro experiments. METHOD: The single-cell RNA sequencing (scRNA-seq) analysis of peripheral blood mononuclear cells (PBMCs) was carried out to investigate the molecular mechanisms of immune responses in vasculitis in KD and COVID-19. The analysis was performed on PBMCs from six children diagnosed with complete KD, three age-matched KD healthy controls (KHC), six COVID-19 patients (COV), three influenza patients (FLU), and four healthy controls (CHC). The results from the scRNA-seq analysis were validated through flow cytometry and immunofluorescence experiments on additional human samples. Subsequently, monocyte adhesion assays, immunofluorescence, and quantitative polymerase chain reaction (qPCR) were used to analyze the damages to endothelial cells post-interaction with monocytes in HUVEC and THP1 cultures. RESULTS: The scRNA-seq analysis revealed the potential cellular types involved and the alterations in genetic transcriptions in the inflammatory responses. The findings indicated that while the immune cell compositions had been altered in KD and COV patients, and the ratio of CD14+ monocytes were both elevated in KD and COV. While the CD14+ monocytes share a large scale of same differentiated expressed geens between KD and COV. The differential activation of CD14 and CD16 monocytes was found to respond to both endothelial and epithelial dysfunctions. Furthermore, SELL+/CCR1+/XAF1+ CD14 monocytes were seen to enhance the adhesion and damage to endothelial cells. The results also showed that different types of B cells were involved in both KD and COV, while only the activation of T cells was recorded in KD. CONCLUSION: In conclusion, our study demonstrated the role of the innate immune response in the regulation of endothelial dysfunction in both KD and COVID-19. Additionally, our findings indicate that the adaptive immunity activation differs between KD and COVID-19. Our results demonstrate that monocytes in COVID-19 exhibit adhesion to both endothelial cells and alveolar epithelial cells, thus providing insight into the mechanisms and shared phenotypes between KD and COVID-19.


Subject(s)
COVID-19 , Mucocutaneous Lymph Node Syndrome , Vasculitis , Child , Humans , Monocytes/metabolism , Mucocutaneous Lymph Node Syndrome/genetics , Mucocutaneous Lymph Node Syndrome/metabolism , Leukocytes, Mononuclear/metabolism , Endothelial Cells/metabolism , Pandemics , RNA-Seq , Lipopolysaccharide Receptors/metabolism , COVID-19/metabolism , Vasculitis/genetics , Vasculitis/metabolism , Receptors, CCR1
5.
J Clin Invest ; 131(20)2021 10 15.
Article in English | MEDLINE | ID: covidwho-1470549

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) manifests as a severe and uncontrolled inflammatory response with multiorgan involvement, occurring weeks after SARS-CoV-2 infection. Here, we utilized proteomics, RNA sequencing, autoantibody arrays, and B cell receptor (BCR) repertoire analysis to characterize MIS-C immunopathogenesis and identify factors contributing to severe manifestations and intensive care unit admission. Inflammation markers, humoral immune responses, neutrophil activation, and complement and coagulation pathways were highly enriched in MIS-C patient serum, with a more hyperinflammatory profile in severe than in mild MIS-C cases. We identified a strong autoimmune signature in MIS-C, with autoantibodies targeted to both ubiquitously expressed and tissue-specific antigens, suggesting autoantigen release and excessive antigenic drive may result from systemic tissue damage. We further identified a cluster of patients with enhanced neutrophil responses as well as high anti-Spike IgG and autoantibody titers. BCR sequencing of these patients identified a strong imprint of antigenic drive with substantial BCR sequence connectivity and usage of autoimmunity-associated immunoglobulin heavy chain variable region (IGHV) genes. This cluster was linked to a TRBV11-2 expanded T cell receptor (TCR) repertoire, consistent with previous studies indicating a superantigen-driven pathogenic process. Overall, we identify a combination of pathogenic pathways that culminate in MIS-C and may inform treatment.


Subject(s)
Autoimmunity , COVID-19/complications , Systemic Inflammatory Response Syndrome/immunology , Adaptive Immunity , Adolescent , Biomarkers/metabolism , COVID-19/genetics , COVID-19/immunology , COVID-19/metabolism , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Cytokine Release Syndrome/immunology , Female , Humans , Infant , Inflammation/immunology , Male , Mucocutaneous Lymph Node Syndrome/genetics , Mucocutaneous Lymph Node Syndrome/immunology , Mucocutaneous Lymph Node Syndrome/metabolism , Neutrophil Activation , Proteomics , RNA-Seq , Receptors, Antigen, B-Cell/genetics , Severity of Illness Index , Systemic Inflammatory Response Syndrome/genetics , Systemic Inflammatory Response Syndrome/metabolism
7.
Nat Commun ; 12(1): 4854, 2021 08 11.
Article in English | MEDLINE | ID: covidwho-1354099

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) presents with fever, inflammation and pathology of multiple organs in individuals under 21 years of age in the weeks following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although an autoimmune pathogenesis has been proposed, the genes, pathways and cell types causal to this new disease remain unknown. Here we perform RNA sequencing of blood from patients with MIS-C and controls to find disease-associated genes clustered in a co-expression module annotated to CD56dimCD57+ natural killer (NK) cells and exhausted CD8+ T cells. A similar transcriptome signature is replicated in an independent cohort of Kawasaki disease (KD), the related condition after which MIS-C was initially named. Probing a probabilistic causal network previously constructed from over 1,000 blood transcriptomes both validates the structure of this module and reveals nine key regulators, including TBX21, a central coordinator of exhausted CD8+ T cell differentiation. Together, this unbiased, transcriptome-wide survey implicates downregulation of NK cells and cytotoxic T cell exhaustion in the pathogenesis of MIS-C.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Systemic Inflammatory Response Syndrome/immunology , Transcriptome/immunology , Adolescent , CD56 Antigen/metabolism , CD57 Antigens/metabolism , CD8-Positive T-Lymphocytes/metabolism , COVID-19/genetics , Child , Child, Preschool , Down-Regulation , Female , Humans , Infant , Infant, Newborn , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Male , Mucocutaneous Lymph Node Syndrome/genetics , Mucocutaneous Lymph Node Syndrome/immunology , SARS-CoV-2/pathogenicity , Systemic Inflammatory Response Syndrome/genetics , Young Adult
8.
J Exp Med ; 218(6)2021 06 07.
Article in English | MEDLINE | ID: covidwho-1203555

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) emerged in April 2020 in communities with high COVID-19 rates. This new condition is heterogenous but resembles Kawasaki disease (KD), a well-known but poorly understood and clinically heterogenous pediatric inflammatory condition for which weak associations have been found with a myriad of viral illnesses. Epidemiological data clearly indicate that SARS-CoV-2 is the trigger for MIS-C, which typically occurs about 1 mo after infection. These findings support the hypothesis of viral triggers for the various forms of classic KD. We further suggest that rare inborn errors of immunity (IEIs) altering the immune response to SARS-CoV-2 may underlie the pathogenesis of MIS-C in some children. The discovery of monogenic IEIs underlying MIS-C would shed light on its pathogenesis, paving the way for a new genetic approach to classic KD, revisited as a heterogeneous collection of IEIs to viruses.


Subject(s)
COVID-19/etiology , Mucocutaneous Lymph Node Syndrome/genetics , Mucocutaneous Lymph Node Syndrome/virology , SARS-CoV-2/pathogenicity , Systemic Inflammatory Response Syndrome/etiology , Biomarkers/blood , COVID-19/epidemiology , COVID-19/immunology , Child , Cytokines/blood , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Inflammation/etiology , Inflammation/genetics , Inflammation/immunology , Inflammation Mediators/blood , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/virology , Models, Biological , Mucocutaneous Lymph Node Syndrome/epidemiology , Pandemics , SARS-CoV-2/immunology , Systemic Inflammatory Response Syndrome/epidemiology , Systemic Inflammatory Response Syndrome/immunology
9.
Front Immunol ; 12: 632890, 2021.
Article in English | MEDLINE | ID: covidwho-1140645

ABSTRACT

Coronavirus disease-19 (COVID-19) in children is usually mild but some are susceptible to a Kawasaki disease (KD)-like multisystem inflammatory syndrome in children (MIS-C) in the convalescent stage, posing a need to differentiate the phenotype, susceptibility, autoimmunity, and immunotherapy between KD and MIS-C, particularly in the upcoming mass vaccination of COVID-19. Patients with MIS-C are prone to gastrointestinal symptoms, coagulopathy, and shock in addition to atypical KD syndrome with fever, mucocutaneous lesions, lymphadenopathy, and/or cardiovascular events. MIS-C manifests KD-like symptoms that alert physicians to early recognize and adopt the KD treatment regimen for patients with MIS-C. MIS-C linked to COVID-19 teaches us infection-associated autoimmune vasculitis and vice versa. Studies on genetic susceptibility have identified certain human leukocyte antigen (HLA) locus and toll-like receptor (TLR) associated with KD and/or COVID-19. Certain HLA subtypes, such as HLA-DRB1 and HLA-MICA A4 are associated with KD. HLA-B*46:01 is proposed to be the risk allele of severe COVID-19 infection, and blood group O type is a protective factor of COVID-19. The autoimmune vasculitis of KD, KD shock syndrome (KDSS), or MIS-C is mediated by a genetic variant of HLA, FcγR, and/or antibody-dependent enhancement (ADE) resulting in hyperinflammation with T helper 17 (Th17)/Treg imbalance with augmented Th17/Th1 mediators: interleukin-6 (IL-6), IL-10, inducible protein-10 (IP-10), Interferon (IFNγ), and IL-17A, and lower expression of Treg-signaling molecules, FoxP3, and transforming growth factor (TGF-ß). There are certain similarities and differences in phenotypes, susceptibility, and pathogenesis of KD, KDSS, and MIS-C, by which a physician can make early protection, prevention, and precision treatment of the diseases. The evolution of immunotherapies for the diseases has shown that intravenous immunoglobulin (IVIG) alone or combined with corticosteroids is the standard treatment for KD, KDSS, and MIS-C. However, a certain portion of patients who revealed a treatment resistance to IVIG or IVIG plus corticosteroids, posing a need to early identify the immunopathogenesis, to protect hosts with genetic susceptibility, and to combat Th17/Treg imbalance by anti-cytokine or pro-Treg for reversal of the hyperinflammation and IVIG resistance. Based on physiological and pathological immunity of the diseases under genetic susceptibility and host milieu conditions, a series of sequential regimens are provided to develop a so-called "Know thyself, enemy (pathogen), and ever-victorious" strategy for the prevention and immunotherapy of KD and/or MIS-C.


Subject(s)
Autoimmunity , COVID-19/immunology , COVID-19/therapy , Genetic Predisposition to Disease/genetics , Immunotherapy/methods , Mucocutaneous Lymph Node Syndrome/immunology , Mucocutaneous Lymph Node Syndrome/therapy , Phenotype , SARS-CoV-2/immunology , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/therapy , Adolescent , Adrenal Cortex Hormones/therapeutic use , COVID-19/genetics , COVID-19/virology , Child , Child, Preschool , Cytokines/blood , Female , HLA Antigens/genetics , Humans , Immunoglobulins, Intravenous/therapeutic use , Immunologic Factors/therapeutic use , Infant , Male , Mucocutaneous Lymph Node Syndrome/genetics , Systemic Inflammatory Response Syndrome/genetics , Systemic Inflammatory Response Syndrome/virology
11.
Curr Opin Pharmacol ; 54: 72-81, 2020 10.
Article in English | MEDLINE | ID: covidwho-778682

ABSTRACT

Kawasaki disease is an acute childhood self-limited vasculitis, causing the swelling or inflammation of medium-sized arteries, eventually leading to cardiovascular problems such as coronary artery aneurysms. Acetylsalicylic acid combined with intravenous immunoglobulin (IVIG) is the standard treatment of Kawasaki disease (KD). However, a rising number of IVIG resistant cases were reported with severe disease complications such as the KD Shock Syndrome or KD-Macrophage activation syndrome. Recent reports have depicted the overlapped number of children with SARS-CoV-2 and KD, which was called multisystem inflammatory syndrome. Simultaneously, the incidence rate of KD-like diseases are increased after the outbreak of COVID-19, suggesting the virus may be associated with KD. New intervention is important to overcome the problem of IVIG treatment resistance. This review aims to introduce the current pharmacological intervention and possible resistance genes for the discovery of new drug for IVIG resistant KD.


Subject(s)
Drug Resistance/genetics , Immunoglobulins, Intravenous/therapeutic use , Mucocutaneous Lymph Node Syndrome/drug therapy , Mucocutaneous Lymph Node Syndrome/genetics , COVID-19/epidemiology , COVID-19/genetics , COVID-19/virology , Comorbidity , Humans , Mucocutaneous Lymph Node Syndrome/epidemiology , Mucocutaneous Lymph Node Syndrome/virology , SARS-CoV-2/pathogenicity
12.
Clin Immunol ; 220: 108591, 2020 11.
Article in English | MEDLINE | ID: covidwho-753773

ABSTRACT

Most severe cases with COVID-19, especially those with pulmonary failure, are not a consequence of viral burden and/or failure of the 'adaptive' immune response to subdue the pathogen by utilizing an adequate 'adaptive' immune defense. Rather it is a consequence of immunopathology, resulting from imbalanced innate immune response, which may not be linked to pathogen burden at all. In fact, it might be described as an autoinflammatory disease. The Kawasaki-like disease seen in children with SARS-CoV-2 exposure might be another example of similar mechanism.


Subject(s)
Autoimmunity/genetics , Betacoronavirus/pathogenicity , Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Host-Pathogen Interactions/immunology , Pneumonia, Viral/immunology , Respiratory Insufficiency/immunology , Acute Disease , Adaptive Immunity , Betacoronavirus/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/virology , COVID-19 , Coronavirus Infections/genetics , Coronavirus Infections/physiopathology , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/physiopathology , Host-Pathogen Interactions/genetics , Humans , Immunity, Innate , Lymphocyte Activation , Mucocutaneous Lymph Node Syndrome/genetics , Mucocutaneous Lymph Node Syndrome/immunology , Mucocutaneous Lymph Node Syndrome/physiopathology , Pandemics , Pneumonia, Viral/genetics , Pneumonia, Viral/physiopathology , Respiratory Insufficiency/genetics , Respiratory Insufficiency/physiopathology , SARS-CoV-2 , Severity of Illness Index
13.
Med Hypotheses ; 143: 110117, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-652869

ABSTRACT

With rapid spread of severe acute respiratory syndrome- corona virus-2 (SARS-COV-2) globally, some new aspects of the disease have been reported. Recently, it has been reported the incidence of Kawasaki-like disease among children with COVID-19. Since, children had been known to be less severely affected by the virus in part due to the higher concentration of Angiotensin converting enzyme (ACE)-2 receptor, this presentation has emerged concerns regarding the infection of children with SARS-COV2. ACE2 has anti-inflammatory, anti-fibrotic and anti-proliferative characteristics through converting angiotensin (Ag)-II to Ang (1-7). ACE2 receptor is downregulated by the SARS-COV through the spike protein of SARS-CoV (SARS-S) via a process that is tightly coupled with Tumor necrosis factor (TNF)-α production. TNF-α plays a key role in aneurysmal formation of coronary arteries in Kawasaki disease (KD). Affected children by COVID-19 with genetically-susceptible to KD might have genetically under-expression of ACE2 receptor that might further decrease the expression of ACE2 due to the downregulation of the receptor by the virus in these patients. It appears that TNF- α might be the cause and the consequence of the ACE2 receptor downregulation which results in arterial walls aneurysm. Conclusion: Genetically under-expression of ACE2 receptor in children with genetically-susceptible to KD who are infected with SARS-CoV-2 possibly further downregulates the ACE2 expression by TNF-α and leads to surge of inflammation including TNF-α and progression to Kawasaki-like disease.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/complications , Models, Immunological , Mucocutaneous Lymph Node Syndrome/etiology , Pandemics , Pneumonia, Viral/complications , Angiotensin-Converting Enzyme 2 , Asia/epidemiology , COVID-19 , Child , Coronary Vessels/immunology , Coronary Vessels/pathology , Coronavirus Infections/epidemiology , Coronavirus Infections/genetics , Cytokine Release Syndrome/etiology , Disease Progression , Endothelium, Vascular/virology , Genetic Predisposition to Disease , Humans , Inflammation , Macrophage Activation , Mucocutaneous Lymph Node Syndrome/epidemiology , Mucocutaneous Lymph Node Syndrome/genetics , Mucocutaneous Lymph Node Syndrome/immunology , Netherlands/epidemiology , Peptidyl-Dipeptidase A/biosynthesis , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/physiology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/genetics , Receptors, Virus/biosynthesis , Receptors, Virus/genetics , Receptors, Virus/physiology , SARS-CoV-2 , Seasons , Spike Glycoprotein, Coronavirus/physiology , Tumor Necrosis Factor-alpha/physiology , United States/epidemiology
14.
Int J Infect Dis ; 97: 371-373, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-597631

ABSTRACT

Recently, an increasing number of SARS-CoV-2 patients with COVID-19 syndrome, which overlaps with Kawasaki Disease (KD), have been reported, supporting the suggestion that infection is one of the triggers of KD. We summarized the reports of simultaneous familial KD cases to better understand the etiopathogenesis of both KD and Multisystem Inflammatory Syndrome in Children (MIS-C) related to COVID-19. Here we discuss the etiology of these syndromes from the point of view of infection and genetic susceptibility.


Subject(s)
Coronavirus Infections/complications , Mucocutaneous Lymph Node Syndrome/genetics , Mucocutaneous Lymph Node Syndrome/pathology , Pneumonia, Viral/complications , Systemic Inflammatory Response Syndrome/genetics , Systemic Inflammatory Response Syndrome/pathology , Adult , Betacoronavirus , COVID-19 , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL